Copied to
clipboard

G = C10.10C42order 160 = 25·5

5th non-split extension by C10 of C42 acting via C42/C2×C4=C2

metabelian, supersoluble, monomial, 2-hyperelementary

Aliases: C10.10C42, C23.27D10, C22.11D20, C22.3Dic10, (C2×C20)⋊8C4, (C2×C4)⋊2Dic5, (C2×C10).4Q8, (C2×Dic5)⋊3C4, (C2×C10).32D4, C10.16(C4⋊C4), C2.5(C4×Dic5), (C22×C4).2D5, (C22×C20).1C2, C2.2(C4⋊Dic5), C22.12(C4×D5), C52(C2.C42), C2.2(C23.D5), C2.2(D10⋊C4), C10.22(C22⋊C4), C2.2(C10.D4), C22.16(C5⋊D4), (C22×Dic5).1C2, C22.10(C2×Dic5), (C22×C10).31C22, (C2×C10).33(C2×C4), SmallGroup(160,38)

Series: Derived Chief Lower central Upper central

C1C10 — C10.10C42
C1C5C10C2×C10C22×C10C22×Dic5 — C10.10C42
C5C10 — C10.10C42
C1C23C22×C4

Generators and relations for C10.10C42
 G = < a,b,c | a10=b4=c4=1, bab-1=a-1, ac=ca, cbc-1=a5b >

Subgroups: 192 in 76 conjugacy classes, 45 normal (19 characteristic)
C1, C2, C2, C4, C22, C22, C5, C2×C4, C2×C4, C23, C10, C10, C22×C4, C22×C4, Dic5, C20, C2×C10, C2×C10, C2.C42, C2×Dic5, C2×Dic5, C2×C20, C2×C20, C22×C10, C22×Dic5, C22×C20, C10.10C42
Quotients: C1, C2, C4, C22, C2×C4, D4, Q8, D5, C42, C22⋊C4, C4⋊C4, Dic5, D10, C2.C42, Dic10, C4×D5, D20, C2×Dic5, C5⋊D4, C4×Dic5, C10.D4, C4⋊Dic5, D10⋊C4, C23.D5, C10.10C42

Smallest permutation representation of C10.10C42
Regular action on 160 points
Generators in S160
(1 2 3 4 5 6 7 8 9 10)(11 12 13 14 15 16 17 18 19 20)(21 22 23 24 25 26 27 28 29 30)(31 32 33 34 35 36 37 38 39 40)(41 42 43 44 45 46 47 48 49 50)(51 52 53 54 55 56 57 58 59 60)(61 62 63 64 65 66 67 68 69 70)(71 72 73 74 75 76 77 78 79 80)(81 82 83 84 85 86 87 88 89 90)(91 92 93 94 95 96 97 98 99 100)(101 102 103 104 105 106 107 108 109 110)(111 112 113 114 115 116 117 118 119 120)(121 122 123 124 125 126 127 128 129 130)(131 132 133 134 135 136 137 138 139 140)(141 142 143 144 145 146 147 148 149 150)(151 152 153 154 155 156 157 158 159 160)
(1 107 23 87)(2 106 24 86)(3 105 25 85)(4 104 26 84)(5 103 27 83)(6 102 28 82)(7 101 29 81)(8 110 30 90)(9 109 21 89)(10 108 22 88)(11 119 31 99)(12 118 32 98)(13 117 33 97)(14 116 34 96)(15 115 35 95)(16 114 36 94)(17 113 37 93)(18 112 38 92)(19 111 39 91)(20 120 40 100)(41 149 61 129)(42 148 62 128)(43 147 63 127)(44 146 64 126)(45 145 65 125)(46 144 66 124)(47 143 67 123)(48 142 68 122)(49 141 69 121)(50 150 70 130)(51 159 71 139)(52 158 72 138)(53 157 73 137)(54 156 74 136)(55 155 75 135)(56 154 76 134)(57 153 77 133)(58 152 78 132)(59 151 79 131)(60 160 80 140)
(1 53 13 43)(2 54 14 44)(3 55 15 45)(4 56 16 46)(5 57 17 47)(6 58 18 48)(7 59 19 49)(8 60 20 50)(9 51 11 41)(10 52 12 42)(21 71 31 61)(22 72 32 62)(23 73 33 63)(24 74 34 64)(25 75 35 65)(26 76 36 66)(27 77 37 67)(28 78 38 68)(29 79 39 69)(30 80 40 70)(81 136 91 126)(82 137 92 127)(83 138 93 128)(84 139 94 129)(85 140 95 130)(86 131 96 121)(87 132 97 122)(88 133 98 123)(89 134 99 124)(90 135 100 125)(101 156 111 146)(102 157 112 147)(103 158 113 148)(104 159 114 149)(105 160 115 150)(106 151 116 141)(107 152 117 142)(108 153 118 143)(109 154 119 144)(110 155 120 145)

G:=sub<Sym(160)| (1,2,3,4,5,6,7,8,9,10)(11,12,13,14,15,16,17,18,19,20)(21,22,23,24,25,26,27,28,29,30)(31,32,33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48,49,50)(51,52,53,54,55,56,57,58,59,60)(61,62,63,64,65,66,67,68,69,70)(71,72,73,74,75,76,77,78,79,80)(81,82,83,84,85,86,87,88,89,90)(91,92,93,94,95,96,97,98,99,100)(101,102,103,104,105,106,107,108,109,110)(111,112,113,114,115,116,117,118,119,120)(121,122,123,124,125,126,127,128,129,130)(131,132,133,134,135,136,137,138,139,140)(141,142,143,144,145,146,147,148,149,150)(151,152,153,154,155,156,157,158,159,160), (1,107,23,87)(2,106,24,86)(3,105,25,85)(4,104,26,84)(5,103,27,83)(6,102,28,82)(7,101,29,81)(8,110,30,90)(9,109,21,89)(10,108,22,88)(11,119,31,99)(12,118,32,98)(13,117,33,97)(14,116,34,96)(15,115,35,95)(16,114,36,94)(17,113,37,93)(18,112,38,92)(19,111,39,91)(20,120,40,100)(41,149,61,129)(42,148,62,128)(43,147,63,127)(44,146,64,126)(45,145,65,125)(46,144,66,124)(47,143,67,123)(48,142,68,122)(49,141,69,121)(50,150,70,130)(51,159,71,139)(52,158,72,138)(53,157,73,137)(54,156,74,136)(55,155,75,135)(56,154,76,134)(57,153,77,133)(58,152,78,132)(59,151,79,131)(60,160,80,140), (1,53,13,43)(2,54,14,44)(3,55,15,45)(4,56,16,46)(5,57,17,47)(6,58,18,48)(7,59,19,49)(8,60,20,50)(9,51,11,41)(10,52,12,42)(21,71,31,61)(22,72,32,62)(23,73,33,63)(24,74,34,64)(25,75,35,65)(26,76,36,66)(27,77,37,67)(28,78,38,68)(29,79,39,69)(30,80,40,70)(81,136,91,126)(82,137,92,127)(83,138,93,128)(84,139,94,129)(85,140,95,130)(86,131,96,121)(87,132,97,122)(88,133,98,123)(89,134,99,124)(90,135,100,125)(101,156,111,146)(102,157,112,147)(103,158,113,148)(104,159,114,149)(105,160,115,150)(106,151,116,141)(107,152,117,142)(108,153,118,143)(109,154,119,144)(110,155,120,145)>;

G:=Group( (1,2,3,4,5,6,7,8,9,10)(11,12,13,14,15,16,17,18,19,20)(21,22,23,24,25,26,27,28,29,30)(31,32,33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48,49,50)(51,52,53,54,55,56,57,58,59,60)(61,62,63,64,65,66,67,68,69,70)(71,72,73,74,75,76,77,78,79,80)(81,82,83,84,85,86,87,88,89,90)(91,92,93,94,95,96,97,98,99,100)(101,102,103,104,105,106,107,108,109,110)(111,112,113,114,115,116,117,118,119,120)(121,122,123,124,125,126,127,128,129,130)(131,132,133,134,135,136,137,138,139,140)(141,142,143,144,145,146,147,148,149,150)(151,152,153,154,155,156,157,158,159,160), (1,107,23,87)(2,106,24,86)(3,105,25,85)(4,104,26,84)(5,103,27,83)(6,102,28,82)(7,101,29,81)(8,110,30,90)(9,109,21,89)(10,108,22,88)(11,119,31,99)(12,118,32,98)(13,117,33,97)(14,116,34,96)(15,115,35,95)(16,114,36,94)(17,113,37,93)(18,112,38,92)(19,111,39,91)(20,120,40,100)(41,149,61,129)(42,148,62,128)(43,147,63,127)(44,146,64,126)(45,145,65,125)(46,144,66,124)(47,143,67,123)(48,142,68,122)(49,141,69,121)(50,150,70,130)(51,159,71,139)(52,158,72,138)(53,157,73,137)(54,156,74,136)(55,155,75,135)(56,154,76,134)(57,153,77,133)(58,152,78,132)(59,151,79,131)(60,160,80,140), (1,53,13,43)(2,54,14,44)(3,55,15,45)(4,56,16,46)(5,57,17,47)(6,58,18,48)(7,59,19,49)(8,60,20,50)(9,51,11,41)(10,52,12,42)(21,71,31,61)(22,72,32,62)(23,73,33,63)(24,74,34,64)(25,75,35,65)(26,76,36,66)(27,77,37,67)(28,78,38,68)(29,79,39,69)(30,80,40,70)(81,136,91,126)(82,137,92,127)(83,138,93,128)(84,139,94,129)(85,140,95,130)(86,131,96,121)(87,132,97,122)(88,133,98,123)(89,134,99,124)(90,135,100,125)(101,156,111,146)(102,157,112,147)(103,158,113,148)(104,159,114,149)(105,160,115,150)(106,151,116,141)(107,152,117,142)(108,153,118,143)(109,154,119,144)(110,155,120,145) );

G=PermutationGroup([[(1,2,3,4,5,6,7,8,9,10),(11,12,13,14,15,16,17,18,19,20),(21,22,23,24,25,26,27,28,29,30),(31,32,33,34,35,36,37,38,39,40),(41,42,43,44,45,46,47,48,49,50),(51,52,53,54,55,56,57,58,59,60),(61,62,63,64,65,66,67,68,69,70),(71,72,73,74,75,76,77,78,79,80),(81,82,83,84,85,86,87,88,89,90),(91,92,93,94,95,96,97,98,99,100),(101,102,103,104,105,106,107,108,109,110),(111,112,113,114,115,116,117,118,119,120),(121,122,123,124,125,126,127,128,129,130),(131,132,133,134,135,136,137,138,139,140),(141,142,143,144,145,146,147,148,149,150),(151,152,153,154,155,156,157,158,159,160)], [(1,107,23,87),(2,106,24,86),(3,105,25,85),(4,104,26,84),(5,103,27,83),(6,102,28,82),(7,101,29,81),(8,110,30,90),(9,109,21,89),(10,108,22,88),(11,119,31,99),(12,118,32,98),(13,117,33,97),(14,116,34,96),(15,115,35,95),(16,114,36,94),(17,113,37,93),(18,112,38,92),(19,111,39,91),(20,120,40,100),(41,149,61,129),(42,148,62,128),(43,147,63,127),(44,146,64,126),(45,145,65,125),(46,144,66,124),(47,143,67,123),(48,142,68,122),(49,141,69,121),(50,150,70,130),(51,159,71,139),(52,158,72,138),(53,157,73,137),(54,156,74,136),(55,155,75,135),(56,154,76,134),(57,153,77,133),(58,152,78,132),(59,151,79,131),(60,160,80,140)], [(1,53,13,43),(2,54,14,44),(3,55,15,45),(4,56,16,46),(5,57,17,47),(6,58,18,48),(7,59,19,49),(8,60,20,50),(9,51,11,41),(10,52,12,42),(21,71,31,61),(22,72,32,62),(23,73,33,63),(24,74,34,64),(25,75,35,65),(26,76,36,66),(27,77,37,67),(28,78,38,68),(29,79,39,69),(30,80,40,70),(81,136,91,126),(82,137,92,127),(83,138,93,128),(84,139,94,129),(85,140,95,130),(86,131,96,121),(87,132,97,122),(88,133,98,123),(89,134,99,124),(90,135,100,125),(101,156,111,146),(102,157,112,147),(103,158,113,148),(104,159,114,149),(105,160,115,150),(106,151,116,141),(107,152,117,142),(108,153,118,143),(109,154,119,144),(110,155,120,145)]])

C10.10C42 is a maximal subgroup of
C23.30D20  C22.2D40  C4⋊C4⋊Dic5  C10.29C4≀C2  (C2×C20)⋊Q8  C10.49(C4×D4)  Dic5.15C42  Dic52C42  C52(C428C4)  C52(C425C4)  C10.51(C4×D4)  C2.(C4×D20)  C4⋊Dic515C4  C10.52(C4×D4)  (C2×Dic5)⋊Q8  C2.(C20⋊Q8)  (C2×Dic5).Q8  (C2×C20).28D4  (C2×C4).Dic10  C10.(C4⋊Q8)  (C22×C4).D10  D5×C2.C42  C22.58(D4×D5)  (C2×C4)⋊9D20  D102C42  D102(C4⋊C4)  D103(C4⋊C4)  C10.54(C4×D4)  C10.55(C4×D4)  (C2×C4).20D20  (C2×C4).21D20  C10.(C4⋊D4)  C207(C4⋊C4)  (C2×C20)⋊10Q8  C4×C10.D4  C424Dic5  C10.92(C4×D4)  C4×C4⋊Dic5  C429Dic5  C425Dic5  C4×D10⋊C4  (C2×C42)⋊D5  C22⋊C4×Dic5  C24.44D10  C23.42D20  C24.3D10  C24.4D10  C24.46D10  C23⋊Dic10  C24.6D10  C24.7D10  C24.47D10  C24.8D10  C24.9D10  C23.14D20  C24.12D10  C23.45D20  C24.14D10  C232D20  C24.16D10  C10.96(C4×D4)  C204(C4⋊C4)  (C2×Dic5)⋊6Q8  C4⋊C4×Dic5  C20.48(C4⋊C4)  C10.97(C4×D4)  (C2×C4)⋊Dic10  (C2×C20).287D4  C4⋊C45Dic5  (C2×C20).288D4  (C2×C20).53D4  (C2×C20).54D4  C206(C4⋊C4)  (C2×C20).55D4  D104(C4⋊C4)  D105(C4⋊C4)  C10.90(C4×D4)  (C2×C4)⋊3D20  (C2×C20).289D4  (C2×C20).290D4  (C2×C20).56D4  C4×C23.D5  C24.62D10  C24.63D10  C24.64D10  C24.65D10  C24.18D10  C24.20D10  C24.21D10  C10.C22≀C2  (Q8×C10)⋊17C4  (C22×D5)⋊Q8  C30.24C42  C30.29C42
C10.10C42 is a maximal quotient of
C426Dic5  (C2×C20)⋊8C8  C24.D10  C24.2D10  C20.31C42  (C2×C20).Q8  C421Dic5  C20.32C42  C20.60(C4⋊C4)  (C2×C40)⋊15C4  C20.39C42  C20.40C42  M4(2)⋊Dic5  C20.33C42  (C2×C40)⋊C4  C23.9D20  C20.34C42  M4(2)⋊4Dic5  C20.51C42  C30.24C42  C30.29C42

52 conjugacy classes

class 1 2A···2G4A4B4C4D4E···4L5A5B10A···10N20A···20P
order12···244444···45510···1020···20
size11···1222210···10222···22···2

52 irreducible representations

dim11111222222222
type++++-+-+-+
imageC1C2C2C4C4D4Q8D5Dic5D10Dic10C4×D5D20C5⋊D4
kernelC10.10C42C22×Dic5C22×C20C2×Dic5C2×C20C2×C10C2×C10C22×C4C2×C4C23C22C22C22C22
# reps12184312424848

Matrix representation of C10.10C42 in GL4(𝔽41) generated by

1000
0100
00034
00635
,
9000
03200
002317
00518
,
9000
04000
003932
00372
G:=sub<GL(4,GF(41))| [1,0,0,0,0,1,0,0,0,0,0,6,0,0,34,35],[9,0,0,0,0,32,0,0,0,0,23,5,0,0,17,18],[9,0,0,0,0,40,0,0,0,0,39,37,0,0,32,2] >;

C10.10C42 in GAP, Magma, Sage, TeX

C_{10}._{10}C_4^2
% in TeX

G:=Group("C10.10C4^2");
// GroupNames label

G:=SmallGroup(160,38);
// by ID

G=gap.SmallGroup(160,38);
# by ID

G:=PCGroup([6,-2,-2,-2,-2,-2,-5,24,217,55,4613]);
// Polycyclic

G:=Group<a,b,c|a^10=b^4=c^4=1,b*a*b^-1=a^-1,a*c=c*a,c*b*c^-1=a^5*b>;
// generators/relations

׿
×
𝔽